December 04, 2012 Volume 08 Issue 45

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Bayer deepens involvement in futuristic Solar Impulse aircraft

Bayer MaterialScience is expanding its contribution to the Solar Impulse project -- an unprecedented around-the-world flight powered solely by solar energy scheduled for takeoff in 2015. The company specializes in high-performance materials and is responsible for the complete design of the cockpit shell of the second, improved model. Among its contributions will be an innovative, extremely high-performance insulating material. Solar Impulse and Bayer MaterialScience announced recently at a joint news conference in Payerne, Switzerland, that the new solar aircraft is expected to be completed in late 2013 and will conduct test flights the following year.

The Solar Impulse first-generation plane flies over Switzerland in 2011. [Image copyright: ©Solar Impulse, Jean Revillard]

 

 

The first model, completed in 2009, will remain available for additional missions. "We are studying several possibilities, and it could perhaps be making its first flights around the United States next year," said Bertrand Piccard, the initiator and chairman of the Swiss project that aims to prove that clean technologies are fully reliable, allowing a drastic reduction in energy consumption. So far the solar aircraft has completed flights in Europe and to North Africa; in each case with materials from Bayer MaterialScience on board.

Solar Impulse aims to be the first aircraft that can fly day and night without fuel or polluting emissions. The project hopes to demonstrate the huge potential of new technologies in terms of energy reduction and the production of renewable energy. The first-generation carbon-fiber aircraft (HB-SIA), which has the wingspan of an Airbus A340 (63.4 m) and the weight of an average family car (1,600 kg), is the result of seven intense years of work, calculations, simulations, and tests by a team of 70 people and 80 partners.

The 12,000 solar cells built into the wing provide four 10-hp electric motors with renewable energy. By day, the solar cells recharge the 400-kg lithium batteries, which enable the plane to fly at night. The Solar Impulse project is supported by Main Partners Solvay, Omega, Deutsche Bank, and Schindler; Official Partners Bayer MaterialScience, Swiss Re Corporate Solutions, and Altran; Official Scientific Advisor: EPFL (the Ecole Polytechnique Federale de Lausanne); and Aeronautical Consultant: Dassault-Aviation.

The first manned around-the-world flight in a fuel-less aircraft is scheduled for takeoff in early 2015. That trip will take place using the second-generation craft called HB-SIB. The flight is expected to take 20 flight-days, with five to six needed just to cross the Pacific and two to three for the Atlantic crossing. Including the necessary breaks, the solar-powered aircraft's journey from west to east will take a total of three to four months.

System leader for the cockpit
"We are now deepening our involvement as we go from materials supplier to system leader for the new cockpit," said Patrick Thomas, chief executive officer of Bayer MaterialScience.

Bayer MaterialScience is contributing a variety of products and solutions to ensure that the second, larger model of the futuristic aircraft will be lightweight, yet retain its rigidity. For example, because the cockpit cowl will be hinged for the first time, a section of it is being supported with a carbon fiber-reinforced plastic.

In addition, the innovative polyurethane foam called Baytherm Microcell will be used as insulation in places. The material offers significantly greater insulating performance than the current standard because Bayer researchers were able to shrink the pores in the foam by an additional 40 percent. Highly efficient insulation is particularly important for the aircraft, because it must withstand temperature fluctuations between -50 degrees C at night and 50 degrees C during the day.

Carbon nanotubes on board
"The significantly larger size of the new cockpit shell and Solar Impulse's tight weight budget meant that we had to further optimize the weight through design measures and targeted choice of materials," explained Martin Kreuter, Solar Impulse project manager at Bayer MaterialScience. Another innovation announced by Kreuter was the use of Baytubes carbon nanotubes in carbon fiber-reinforced structural components in order to reach more savings both regarding material and weight.

"This will allow us to enlarge the wings of the new aircraft and increase the number of solar cells mounted on them," Kreuter said.

Solar Impulse CEO and cofounder Andre Borschberg says that work on the new aircraft is already far advanced. "Eighty percent of the design phase and 50 percent of the construction phase have been completed," he said.

Here is the first-generation craft landing this year:

Learn more at solarimpulse.com

Source: Bayer MaterialScience

Published December 2012

Rate this article

[Bayer deepens involvement in futuristic Solar Impulse aircraft]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2012 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy